Highest vectors of representations (total 9) ; the vectors are over the primal subalgebra. | g21+3g6 | g23+3/4g1 | g19 | g5+3/4g4 | g22 | g16 | g25 | g20 | g13 |
weight | 2ω1 | 2ω1 | 2ω1 | 2ω2 | 4ω1 | ω1+3ω2 | 6ω1 | 3ω1+3ω2 | 6ω2 |
Isotypical components + highest weight | V2ω1 → (2, 0) | V2ω2 → (0, 2) | V4ω1 → (4, 0) | Vω1+3ω2 → (1, 3) | V6ω1 → (6, 0) | V3ω1+3ω2 → (3, 3) | V6ω2 → (0, 6) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
|
| Semisimple subalgebra component.
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 4ω1 2ω1 0 −2ω1 −4ω1 | ω1+3ω2 −ω1+3ω2 ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 ω1−3ω2 −ω1−3ω2 | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | 3ω1+3ω2 ω1+3ω2 3ω1+ω2 −ω1+3ω2 ω1+ω2 3ω1−ω2 −3ω1+3ω2 −ω1+ω2 ω1−ω2 3ω1−3ω2 −3ω1+ω2 −ω1−ω2 ω1−3ω2 −3ω1−ω2 −ω1−3ω2 −3ω1−3ω2 | 6ω2 4ω2 2ω2 0 −2ω2 −4ω2 −6ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 2ω1 0 −2ω1 | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 4ω1 2ω1 0 −2ω1 −4ω1 | ω1+3ω2 −ω1+3ω2 ω1+ω2 −ω1+ω2 ω1−ω2 −ω1−ω2 ω1−3ω2 −ω1−3ω2 | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | 3ω1+3ω2 ω1+3ω2 3ω1+ω2 −ω1+3ω2 ω1+ω2 3ω1−ω2 −3ω1+3ω2 −ω1+ω2 ω1−ω2 3ω1−3ω2 −3ω1+ω2 −ω1−ω2 ω1−3ω2 −3ω1−ω2 −ω1−3ω2 −3ω1−3ω2 | 6ω2 4ω2 2ω2 0 −2ω2 −4ω2 −6ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M2ω1⊕M0⊕M−2ω1 | M2ω1⊕M0⊕M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 | Mω1+3ω2⊕M−ω1+3ω2⊕Mω1+ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−ω1−ω2⊕Mω1−3ω2⊕M−ω1−3ω2 | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | M3ω1+3ω2⊕Mω1+3ω2⊕M3ω1+ω2⊕M−ω1+3ω2⊕Mω1+ω2⊕M3ω1−ω2⊕M−3ω1+3ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M3ω1−3ω2⊕M−3ω1+ω2⊕M−ω1−ω2⊕Mω1−3ω2⊕M−3ω1−ω2⊕M−ω1−3ω2⊕M−3ω1−3ω2 | M6ω2⊕M4ω2⊕M2ω2⊕M0⊕M−2ω2⊕M−4ω2⊕M−6ω2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M2ω1⊕M0⊕M−2ω1 | 2M2ω1⊕2M0⊕2M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1 | Mω1+3ω2⊕M−ω1+3ω2⊕Mω1+ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M−ω1−ω2⊕Mω1−3ω2⊕M−ω1−3ω2 | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | M3ω1+3ω2⊕Mω1+3ω2⊕M3ω1+ω2⊕M−ω1+3ω2⊕Mω1+ω2⊕M3ω1−ω2⊕M−3ω1+3ω2⊕M−ω1+ω2⊕Mω1−ω2⊕M3ω1−3ω2⊕M−3ω1+ω2⊕M−ω1−ω2⊕Mω1−3ω2⊕M−3ω1−ω2⊕M−ω1−3ω2⊕M−3ω1−3ω2 | M6ω2⊕M4ω2⊕M2ω2⊕M0⊕M−2ω2⊕M−4ω2⊕M−6ω2 |