Processing math: 100%
Subalgebra A111+A101C15
48 out of 119
Computations done by the calculator project.

Subalgebra type: A111+A101 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A111 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: C15

Elements Cartan subalgebra scaled to act by two by components: A111: (6, 8, 10, 10, 5): 22, A101: (0, 0, 0, 6, 4): 20
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g1+g19+g23, g4+g5
Positive simple generators: 4g23+g19+3g1, 4g5+3g4
Cartan symmetric matrix: (2/11001/5)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (220020)
Decomposition of ambient Lie algebra: V6ω2V3ω1+3ω2V6ω1Vω1+3ω2V4ω1V2ω23V2ω1
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 9) ; the vectors are over the primal subalgebra.g21+3g6g23+3/4g1g19g5+3/4g4g22g16g25g20g13
weight2ω12ω12ω12ω24ω1ω1+3ω26ω13ω1+3ω26ω2
Isotypic module decomposition over primal subalgebra (total 8 isotypic components).
Isotypical components + highest weightV2ω1 → (2, 0)V2ω2 → (0, 2)V4ω1 → (4, 0)Vω1+3ω2 → (1, 3)V6ω1 → (6, 0)V3ω1+3ω2 → (3, 3)V6ω2 → (0, 6)
Module label W1W2W3W4W5W6W7W8
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
4g23+g19+3g1
5h510h410h38h26h1
2g12g192g23
g23+3/4g1
h52h42h32h23/2h1
1/2g11/2g23
g21+3g6
2g2g2
g6+g21
Semisimple subalgebra component.
4/3g5g4
4/3h5+2h4
2/3g4+2/3g5
g22
g21g6
2g2g2
g63g21
4g22
g16
g3
g12
g8
g8
g12
g3
g16
g25
g24
2g23g1
2h54h44h34h2+2h1
4g16g23
10g24
20g25
g20
g18
g17
g7
g15
g14
g10
g11
g11
g10
g14
g15
g7
g17
g18
g20
g13
g9
2g5g4
2h5+2h4
4g46g5
10g9
20g13
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above2ω1
0
2ω1
2ω1
0
2ω1
2ω2
0
2ω2
4ω1
2ω1
0
2ω1
4ω1
ω1+3ω2
ω1+3ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω13ω2
ω13ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
3ω1+3ω2
ω1+3ω2
3ω1+ω2
ω1+3ω2
ω1+ω2
3ω1ω2
3ω1+3ω2
ω1+ω2
ω1ω2
3ω13ω2
3ω1+ω2
ω1ω2
ω13ω2
3ω1ω2
ω13ω2
3ω13ω2
6ω2
4ω2
2ω2
0
2ω2
4ω2
6ω2
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ω1
0
2ω1
2ω1
0
2ω1
2ω2
0
2ω2
4ω1
2ω1
0
2ω1
4ω1
ω1+3ω2
ω1+3ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω13ω2
ω13ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
3ω1+3ω2
ω1+3ω2
3ω1+ω2
ω1+3ω2
ω1+ω2
3ω1ω2
3ω1+3ω2
ω1+ω2
ω1ω2
3ω13ω2
3ω1+ω2
ω1ω2
ω13ω2
3ω1ω2
ω13ω2
3ω13ω2
6ω2
4ω2
2ω2
0
2ω2
4ω2
6ω2
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ω1M0M2ω1M2ω1M0M2ω1M2ω2M0M2ω2M4ω1M2ω1M0M2ω1M4ω1Mω1+3ω2Mω1+3ω2Mω1+ω2Mω1+ω2Mω1ω2Mω1ω2Mω13ω2Mω13ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M3ω1+3ω2Mω1+3ω2M3ω1+ω2Mω1+3ω2Mω1+ω2M3ω1ω2M3ω1+3ω2Mω1+ω2Mω1ω2M3ω13ω2M3ω1+ω2Mω1ω2Mω13ω2M3ω1ω2Mω13ω2M3ω13ω2M6ω2M4ω2M2ω2M0M2ω2M4ω2M6ω2
Isotypic characterM2ω1M0M2ω12M2ω12M02M2ω1M2ω2M0M2ω2M4ω1M2ω1M0M2ω1M4ω1Mω1+3ω2Mω1+3ω2Mω1+ω2Mω1+ω2Mω1ω2Mω1ω2Mω13ω2Mω13ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M3ω1+3ω2Mω1+3ω2M3ω1+ω2Mω1+3ω2Mω1+ω2M3ω1ω2M3ω1+3ω2Mω1+ω2Mω1ω2M3ω13ω2M3ω1+ω2Mω1ω2Mω13ω2M3ω1ω2Mω13ω2M3ω13ω2M6ω2M4ω2M2ω2M0M2ω2M4ω2M6ω2

Semisimple subalgebra: W_{1}+W_{3}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00)
(0.00, 1.00)
0: (1.00, 0.00): (750.00, 300.00)
1: (0.00, 1.00): (200.00, 800.00)




Made total 4368 arithmetic operations while solving the Serre relations polynomial system.